Ce que je trouve triplement frustrant c'est d'une part que soit il est possible de trouver la focale mais je n'y arrive pas, soit on doit pouvoir démontrer que c'est impossible (mon hypothese)... mais je n'y arrive pas.
Citation de Franciscus Corvinus (pour l'instant je ne contrôle pas bien les citations !)
Je propose une démonstration.
Je dessine un trièdre Oxyz avec x vers la droite, y vers le haut et z vers moi (ou vous), plus précisément z est dessiné oblique vers la gauche et le bas (représentation cavalière). Je dessine l'objet du côté des z < 0, soit M(x, y, z) un des ses points. Je dessine la lentille de centre optique O et d'axe optique z (c'est un disque de centre O), je place son foyer image F' (OF'= f) sur l'axe z du côté z > 0, et je dessine son plan focal image (il est perpendiculaire à x et passe par F'). Soit M'(x', y', z' = f) l'image de M (je néglige le "tirage" de l'objectif).
En posant que les points M, O, M' sont alignés donc les vecteurs OM et OM' colinéaires on obtient :
x'/x = y'/y = f/z d'où :
x' = x f/z et y' = y f/z
qui sont les formules utileson remarque que le "coefficient" qui permet de passer de x, y à x', y' est le même pour x et y.
C'est maintenant que le raisonnement commence,
- on fait une 1ère photo avec l'objectif de distance focale f et on obtient une image de l'objet (ensemble de points M) vu du point O.
- pour faire une 2ème photo on choisit un objectif de distance focale 2f, mais simultanément on fait subir à l'objet une transformation qui l'étire suivant z d'un facteur 2 (affinité d'axe z d'origine z = 0) à partir du plan Oxy. Il s'agit d'une opération intellectuelle qui change la forme de l'objet dans une seule direction. Dans ces conditions le rapport f/z qui devient 2f/2z est inchangé, donc comme x et y ne changent pas non plus, x' et y' sont inchangés.
Ce raisonnement est valable pour tous les points de l'objet donc tous les points de l'image.
Par conséquent sur les 2 photos l'image est identique.
Ceci montre que si on ne connait pas à priori la forme de l'objet on ne peut pas trouver par l'image la distance focale f car tous les choix possible de x/z (pour un point donné de l'objet) donneront une valeur de f différente.
Par exemple si on admet que la largeur de la nef de la cathédrale est 10 m et que sa longueur est 40 m on trouve f = 25 mm, mais si on suppose que la largeur valant toujours 10 m, la longueur vaut 80 m, alors on trouvera f = 50 mm.
Pour pouvoir attribuer la bonne valeur à f, il faut connaître à priori les proportions de l'objet, ce qui n'est pas le cas de la cathédrale (sauf si on "triche" avec la plan donné par Philippe Leroy

).
J'ai pu m'en tirer en choisissant dans la cathédrale une partie qui peut être connue avec peu de chances de se tromper.
Attention, ce raisonnement démontre qu'il est impossible de trouver f sur une photo si on ne connait pas les proportions de l'objet ou d'une de ses composantes.
Mais cela ne veut pas dire que si on connait les proportions de l'objet photographié on trouvera f à coup sûr. Par exemple :
- si l'objet est un cube dont une des faces est perpendiculaire à l'axe optique (c'est à peu près le cas que j'ai utilisé pour la cathédrale) on trouve f facilement
mais si le cube est tourné de 45° autour d'un axe vertical, avec alors un des ses cotés verticaux face à l'objectif, l'affaire se complique
- si l'objet est une sphère lisse seule dans l'espace, je pense pouvoir affirmer qu'il est impossible de trouver f à partir de sa photo, alors que l'on connait ses proportions,
si cet objet devient un ballon de football constitué avec des pièces de cuir apparentes, c'est peut-être possible
- et si l'objet est un disque circulaire horizontal vu sur l'image comme une ellipse ?